Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Angew Chem Int Ed Engl ; 60(24): 13280-13286, 2021 06 07.
Article in English | MEDLINE | ID: covidwho-1384109

ABSTRACT

Eukaryotic mRNAs are emerging modalities for protein replacement therapy and vaccination. Their 5' cap is important for mRNA translation and immune response and can be naturally methylated at different positions by S-adenosyl-l-methionine (AdoMet)-dependent methyltransferases (MTases). We report on the cosubstrate scope of the MTase CAPAM responsible for methylation at the N6 -position of adenosine start nucleotides using synthetic AdoMet analogs. The chemo-enzymatic propargylation enabled production of site-specifically modified reporter-mRNAs. These cap-propargylated mRNAs were efficiently translated and showed ≈3-fold increased immune response in human cells. The same effects were observed when the receptor binding domain (RBD) of SARS-CoV-2-a currently tested epitope for mRNA vaccination-was used. Site-specific chemo-enzymatic modification of eukaryotic mRNA may thus be a suitable strategy to modulate translation and immune response of mRNAs for future therapeutic applications.


Subject(s)
RNA Caps/immunology , RNA, Messenger/immunology , COVID-19/pathology , COVID-19/virology , Chromatography, High Pressure Liquid , Genes, Reporter , HEK293 Cells , Humans , Mass Spectrometry , Methylation , Methyltransferases/metabolism , Protein Biosynthesis , Protein Domains/genetics , Protein Domains/immunology , RNA Caps/analysis , RNA Caps/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , S-Adenosylmethionine/chemistry , S-Adenosylmethionine/immunology , S-Adenosylmethionine/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL